Convexity of chance constrained programming problems with respect to a new generalized concavity notion
نویسندگان
چکیده
In this paper, convexity of chance constrained problems have been investigated. A new generalization of convexity concept, named h-concavity, has been introduced and it has been shown that this new concept is the generalization of the α-concavity. Then, using the new concept, some of the previous results obtained by Shapiro et al. [in Lecture Notes on Stochastic Programming Modeling and Theory, SIAM and MPS, 2009] on properties of α-concave functions, have been extended. Next the convexity of chance constraints with independent random variables is investigated. It will be shown how concavity properties of the mapping related to the decision vector have to be combined with suitable properties of decrease or increase for the marginal densities in order to arrive at convexity of the feasible set for large enough probability levels and then sufficient conditions for convexity of chance constrained problems which has been introduced by Henrion and Strugarek [in Convexity of chance constraints with independent random variables. Comput. Optim. Appl. 41:263–276, 2008] has been extended in this paper for a wider class of real functions.
منابع مشابه
SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملWeak Structural Dependence in Chance-Constrained Programming
In chance-constrained optimization problems, a solution is assumed to be feasible only with certain, sufficiently high probability. For computational and theoretical purposes, the convexity property of the resulting constraint set is treated. It is known, for example, that a suitable combination of a concavity property of the probability distribution and concavity of constraint mappings are suf...
متن کاملEventual Convexity of Chance Constrained Feasible Sets
In decision making problems where uncertainty plays a key role and decisions have to be taken prior to observing uncertainty, chance constraints are a strong modelling tool for defining safety of decisions. These constraints request that a random inequality system depending on a decision vector has to be satisfied with a high probability. The characteristics of the feasible set of such chance c...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملNew optimality conditions for multiobjective fuzzy programming problems
In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables. Based on a new $p$-dimensional fuzzy stationary-point definition, necessary efficiency conditions are obtained. And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 196 شماره
صفحات -
تاریخ انتشار 2012